Sourcecode: Example7.c

Sourcecode: Example7.c

] COLLABORATORS
TITLE :
Sourcecode: Example7.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example7.c iii

Contents

1 Sourcecode: Example7.c 1
L1 Example7.C o e e e 1

Sourcecode: Example7.c

Chapter 1

Sourcecode: Example7.c

1.1 Example7.c

/***k*k~k*******k‘k*k~k******~k*‘k~k********k***k*k****‘k********‘k*‘k**‘k***/

/ %

/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC)
J*x —mmm e e
/ *

/* Manual: AmigaDOS Amiga C Club

/+ Chapter: Advanced Routines Tulevagen 22

/+ File: Example7.c 181 41 LIDINGO
/+ Author: Anders Bjerin SWEDEN

/* Date: 93-03-17

/* Version: 1.1

/ *

/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC)

/ *

/* Registered members may use this program freely in their
/ * own commercial/noncommercial programs/articles.

/ %

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*********************************k**************************/

/* This example will as the previous one examine the special

/+ lists of available Assigns, Volumes and Devices. This
/+ example will however add the volume name to the device
/* in which the volume is. We will also only print the

/+ devices (with their volume name) which are currently
/+ available to access. We will for example not print the
/x device "df0:" if there is not a disk in that drive.

/+ However, 1f there is a disk in the drive we will both

/* print the device name and the name of the volume which is

/+ in that device. We will therefore get a list which is
/+ identical to the one used by the ASL file requeter.

/+ Include the dos library definitions: =/
#include <dos/dos.h>

/* Include memory definitions: (MEMF_ANY...) =/
#include <exec/memory.h>

*/
*/
*/
*/
*/
x/
*/
*/
*/
*/
*/

Sourcecode: Example7.c

2/6

/+* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */
#nclude <stdio.h>? /* Std functions [drintf()...] x/
#incl*de <stdlib.h> 8 /* Std fun?tions [exit0)...] */

/* Set name and version number: =*/
UBYTE *vrsion = "$VER: AmigaDOS/Advanced Routines/Example7 11";

/* 1. Declare an external global library =/
/ * ?ointer to the Dos library: %/
extern struct =osLibrary =xDOSase;

/* Declare our own fHnctions: =*/

/+* Our main fu~ction: =/
int main(int argc, char xar~v[])

/* Prints thn d[vice name of~a volume: */
int Pri?tDevice(struct DosList xfirst_node- APTR task);

S+ PrinEs BCPL strings:Axn/
void PrintBSTR(BSTR string bstr, int total_length);

/* Main func?ion: =/

int main(int argc, char *[rgv[])

{
/* Temporary BCPL pointer used to convert BPTRs into C pointerua =*/
BPTR temp_bptr;

/% PIlinterto the RootNode structure: =/
strult RootNode xro?tnode_pt—;

/* Pointer to a DosInfo structure: =/
struct DosInfo xd__info_ptr;

/+ Pointer to the first DosList structure: =/
struct DosList xfirst_doslist_nodA;

/* Pointer to the current (the one we are */

/* workinF with) DosList structure: *x/
struct DosList xdoslist_node;

/+ 2. Get a pointer to the RootNode structure: x/

Sourcecode: Example7.c

3/6

rootnode_ptr = DOSBase—->dl_RooZ;

/+ 3. Get a BCPLgpointer (BPTR) to the DosInfo structure: =/
temp_bptr = rootnode_ptr->rn_Info;

/* 4. Convert the BCPL pointer into a normal C pointer: x/

/= (If I say that I hate BCPL with its¢acquired */
/+ pointers and strings I do not exaggerate...) */
dos_info_ptr = (struct DosInfo %) BADDR(temp_bptr);

a /+ Before we may start to examine the DosInfo structure we

/+hbve to turn off the multitasking by calling the Forbid()
/+ function. As soon as we have finished using the DosInfo

/* structure we must of course turn the multitaskin on again,
/* by calling the Permit () function.

/ *

/+ Note that while the multitasking is OFF we must be very

/+ careful so we do not try to wait for some external event.
/+ If we try to wait for something to happen "outside" our

/* program we will sit and wait forever since nothing can

/+ happen outside our program as long as the multitasking is
/* off. You must therefore NEVER use the Wait () or similar

/+ functions after you have forbidden other programs to run.
/+ As soon as we turn the multitasking on again, by using the

/* Permit () function, we may of course start to wait for
/* external events.
/ *

/* A program that turns off the multitasking is interrupting
/* other programs. You must therefore try to turn the
/+ multitaskin on again as soon as possible.

/ *

/+ With the new Release 2 you should actually use the special
/+ LockDosList () and NextDosEntry () functions instead of

/* using the Forbid() and Permit () functions. However, since
/* this program should run on all Amigas we stick to the old
/* methods. (See "Amiga DOS" chapter for more information on
/* the new LockDosList () and NextDosEntry () functions.)

/* 5. Turn the multitaskin OFF: */
Forbid() ;

/* 6. Scan the "DosList" nodes... x/

/* Get a BCPL pointer (BPTR) to the first "DosList" node: */
temp_bptr = dos_info_ptr->di_DevInfo;

/+ Convert the BPTR into a C pointer: =/
first_doslist_node = (struct DosList x) BADDR(temp_bptr);

/* Start with the first node: =/
doslist_node = first_doslist_node;

/* Check all nodes: x/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Sourcecode: Example7.c

4/6

like the disk drives

"hdO0:

n
o e ey

name of the hard
Each of these

.)

The

"ACE" disk

Assigns we print

while(doslist_node)
{
/+ There exist three different types of objects we can find:
/ * 1. Devices (the "hardware parts")
/ * "df0:", "dfl:"..., possible harddisks
/ * as well as all the special devices like "PRT:", "SER:",
/ * "CON:" etc...
/ *
/ * 2. Volumes, which is the name of the different objects
/ * (the name of the disks e.g. "ACEl:",
/ * disk partitions "HDO:", "HD1l:" etc..
/ * volumes must be in one of the Devices!
/ * is maybe in "df0:", and hard disk "HDO:" probably in
/ * device "DHO:" and so on...
/ *
/ * 3. Assigns, simle assigns created with help of the Shell
/ * command "Assign".
/ *
/+ Since we only want to print the device names in which there
/* 1is a volume, we only print the volume names and will then
/* look up the device which the volume is in.
/* directly.
/+x Is it a volume? =«/
if(doslist_node->dol_Type == DLT_VOLUME)

{

/ *

if(doslist_node->dol_Type == DLT_DIRECTORY)

{

/* We have found a volume! Print the name of the x/

/% device in which the volume is:
if(PrintDevice(first_doslist_node,

(APTR) doslist_node->dol_Task)
printf ("Could not find the volume’s device name!");

else
PrintBSTR(doslist_node->dol_Name,

printf ("\n");

Is it an Assign? =/

30

)i

*/

!= RETURN_OK

/+ It is an Assigs! Simply print the string "<ASN>" and =/

/* add the assign name:
printf ("<ASN> ")

PrintBSTR(doslist_node->dol_Name, 30

printf ("\n");

)i

*/

/* Get a BPTR to the next node and convert the BPTR x/

/+ into a C pointer:

doslist_node = (struct DosList %) BADDR/(
}
/* 7. Turn the multitaskin ON again: x*/

Permit () ;

*/

doslist_node—->dol_Next

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

)

)

Sourcecode: Example7.c

/ *
/ *
/ *
/ *
/ *
in

(

/ *
/ *
/ *
/ *

Prints the device name of a volume: (With help of the
address to the "task" which handles our volume we can
find the corresponding device. Both the device and the
volume use the same "task" if the volume is in the
device.)
t PrintDevice

struct DosList *xfirst_node,
APTR task

/+ Node pointer: =/
struct DosList =xnode;

/* Start with the first node: (Rescan the whole list!) =«
node = first_node;

/* Check all nodes: x/
while (node)
{
/+ Check all devices: «/
if (node->dol_Type == DLT_DEVICE)
{
/+ Has the device a pointer to the same task */
/+ as the volume which we are examining? */
if(task == (APTR) node->dol_Task)
{
/* Found it! Print the device name: x/
PrintBSTR(node->dol_Name, 8);

/+ Return with the satisfaction of a job well done...

return(RETURN_OK) ;

/+ Convert the next node’s BPTR into a C pointer: =*/
node = (struct DosList) BADDR(node->dol_Next);

/* Ooops, something is wrong here. Could not find */
/+ the volume’s corresponding device name... */
return(RETURN_ERROR) ;

Handly little function which prints BCPL strings (BSTRs

(This one will add any necessary spaces to fill the whole
"total_length" with text. This makes it look better since

we can now use nice columns of text.)

void PrintBSTR

(

*/
*/
*/
*/
*/

/

)t

*/

*/
*/
*/
*/

Sourcecode: Example7.c

6/6

BSTR string_bstr,
int total_length

/* Temporary string pointer x/
UBYTE *string_ptr;

/+ The length of the BCPL string: =/
UBYTE length;

/% Simple loop variable: x/
int loop;

/* Conver the BSTR into a normal C pointer to a BCPL string:
string _ptr = (UBYTE x) BADDR(string_bstr);

/* Get the length of the BCPL string: (A BCPL string does not
/+ contain a NULL sign in the end, but uses instead the first
/* byte to tell how many characters the string contains. A

/* BCPL string (BSTR) can therefore not contain more than 255
/+ characters.

length = string_ptr[0 1;

/% Print BCPL string: */
for(loop=1l; loop <= total_length; loop++)
if(loop <= length)
putchar (string_ptr[loop]);
else
putchar(" 7);

*/

*/
*/
*/
*/
*/

	Sourcecode: Example7.c
	Example7.c

