
Sourcecode: Example7.c

Sourcecode: Example7.c ii

COLLABORATORS

TITLE :

Sourcecode: Example7.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example7.c iii

Contents

1 Sourcecode: Example7.c 1

1.1 Example7.c . 1

Sourcecode: Example7.c 1 / 6

Chapter 1

Sourcecode: Example7.c

1.1 Example7.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Advanced Routines Tulevagen 22 */
/* File: Example7.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-17 */
/* Version: 1.1 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This example will as the previous one examine the special */
/* lists of available Assigns, Volumes and Devices. This */
/* example will however add the volume name to the device */
/* in which the volume is. We will also only print the */
/* devices (with their volume name) which are currently */
/* available to access. We will for example not print the */
/* device "df0:" if there is not a disk in that drive. */
/* However, if there is a disk in the drive we will both */
/* print the device name and the name of the volume which is */
/* in that device. We will therefore get a list which is */
/* identical to the one used by the ASL file requeter. */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Include memory definitions: (MEMF_ANY...) */
#include <exec/memory.h>

Sourcecode: Example7.c 2 / 6

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */
#nclude <stdio.h>? /* Std functions [ärintf()...] */
#incl^de <stdlib.h> 8 /* Std fun?tions [exit0)...] */

/* Set name and version number: */
UBYTE *vrsion = "$VER: AmigaDOS/Advanced Routines/Example7 11";

/* 1. Declare an external global library */
/* ?ointer to the Dos library: */
extern struct =osLibrary *DOSase;

/* Declare our own fHnctions: */

/* Our main fu~ction: */
int main(int argc, char *ar~v[])

/* Prints thn d[vice name of~a volume: */
int Pri?tDevice(struct DosList *first_node· APTR task);

§* PrinËs BCPL strings:À¤/
void PrintBSTR(BSTR string_bstr, int total_length);

/* Main func?ion: */

int main(int argc, char *[rgv[])
{

/* Temporary BCPL pointer used to convert BPTRs into C pointerú */
BPTR temp_bptr;

/* PÌinterto the RootNode structure: */
struIt RootNode *ro?tnode_pt-;

/* Pointer to a DosInfo structure: */
struct DosInfo *d__info_ptr;

/* Pointer to the first DosList structure: */
struct DosList *first_doslist_nodA;

/* Pointer to the current (the one we are */
/* workinF with) DosList structure: */
struct DosList *doslist_node;

/* 2. Get a pointer to the RootNode structure: */

Sourcecode: Example7.c 3 / 6

rootnode_ptr = DOSBase->dl_RooZ;

/* 3. Get a BCPLqpointer (BPTR) to the DosInfo structure: */
temp_bptr = rootnode_ptr->rn_Info;

/* 4. Convert the BCPL pointer into a normal C pointer: */
/* (If I say that I hate BCPL with its¢acquired */
/* pointers and strings I do not exaggerate...) */
dos_info_ptr = (struct DosInfo *) BADDR(temp_bptr);

n
à /* Before we may start to examine the DosInfo structure we *

/*hbve to turn off the multitasking by calling the Forbid() */
/* function. As soon as we have finished using the DosInfo */
/* structure we must of course turn the multitaskin on again, */
/* by calling the Permit() function. */
/* */
/* Note that while the multitasking is OFF we must be very */
/* careful so we do not try to wait for some external event. */
/* If we try to wait for something to happen "outside" our */
/* program we will sit and wait forever since nothing can */
/* happen outside our program as long as the multitasking is */
/* off. You must therefore NEVER use the Wait() or similar */
/* functions after you have forbidden other programs to run. */
/* As soon as we turn the multitasking on again, by using the */
/* Permit() function, we may of course start to wait for */
/* external events. */
/* */
/* A program that turns off the multitasking is interrupting */
/* other programs. You must therefore try to turn the */
/* multitaskin on again as soon as possible. */
/* */
/* With the new Release 2 you should actually use the special */
/* LockDosList() and NextDosEntry() functions instead of */
/* using the Forbid() and Permit() functions. However, since */
/* this program should run on all Amigas we stick to the old */
/* methods. (See "Amiga DOS" chapter for more information on */
/* the new LockDosList() and NextDosEntry() functions.) */

/* 5. Turn the multitaskin OFF: */
Forbid();

/* 6. Scan the "DosList" nodes... */

/* Get a BCPL pointer (BPTR) to the first "DosList" node: */
temp_bptr = dos_info_ptr->di_DevInfo;

/* Convert the BPTR into a C pointer: */
first_doslist_node = (struct DosList *) BADDR(temp_bptr);

/* Start with the first node: */
doslist_node = first_doslist_node;

/* Check all nodes: */

Sourcecode: Example7.c 4 / 6

while(doslist_node)
{

/* There exist three different types of objects we can find: */
/* 1. Devices (the "hardware parts") like the disk drives */
/* "df0:", "df1:"..., possible harddisks "hd0:"..., */
/* as well as all the special devices like "PRT:", "SER:", */
/* "CON:" etc... */
/* */
/* 2. Volumes, which is the name of the different objects */
/* (the name of the disks e.g. "ACE1:", name of the hard */
/* disk partitions "HD0:", "HD1:" etc...) Each of these */
/* volumes must be in one of the Devices! The "ACE" disk */
/* is maybe in "df0:", and hard disk "HD0:" probably in */
/* device "DH0:" and so on... */
/* */
/* 3. Assigns, simle assigns created with help of the Shell */
/* command "Assign". */
/* */
/* Since we only want to print the device names in which there */
/* is a volume, we only print the volume names and will then */
/* look up the device which the volume is in. Assigns we print */
/* directly. */

/* Is it a volume? */
if(doslist_node->dol_Type == DLT_VOLUME)
{

/* We have found a volume! Print the name of the */
/* device in which the volume is: */
if(PrintDevice(first_doslist_node,

(APTR) doslist_node->dol_Task) != RETURN_OK)
printf("Could not find the volume’s device name!");

else
PrintBSTR(doslist_node->dol_Name, 30);

printf ("\n");
}

/* Is it an Assign? */
if(doslist_node->dol_Type == DLT_DIRECTORY)
{

/* It is an Assigs! Simply print the string "<ASN>" and */
/* add the assign name: */
printf("<ASN> ");
PrintBSTR(doslist_node->dol_Name, 30);
printf ("\n");

}

/* Get a BPTR to the next node and convert the BPTR */
/* into a C pointer: */
doslist_node = (struct DosList *) BADDR(doslist_node->dol_Next);

}

/* 7. Turn the multitaskin ON again: */
Permit();

}

Sourcecode: Example7.c 5 / 6

/* Prints the device name of a volume: (With help of the */
/* address to the "task" which handles our volume we can */
/* find the corresponding device. Both the device and the */
/* volume use the same "task" if the volume is in the */
/* device.) */
int PrintDevice
(

struct DosList *first_node,
APTR task

)
{

/* Node pointer: */
struct DosList *node;

/* Start with the first node: (Rescan the whole list!) */
node = first_node;

/* Check all nodes: */
while(node)
{

/* Check all devices: */
if(node->dol_Type == DLT_DEVICE)
{

/* Has the device a pointer to the same task */
/* as the volume which we are examining? */
if(task == (APTR) node->dol_Task)
{

/* Found it! Print the device name: */
PrintBSTR(node->dol_Name, 8);

/* Return with the satisfaction of a job well done... */
return(RETURN_OK);

}
}

/* Convert the next node’s BPTR into a C pointer: */
node = (struct DosList *) BADDR(node->dol_Next);

}

/* Ooops, something is wrong here. Could not find */
/* the volume’s corresponding device name... */
return(RETURN_ERROR);

}

/* Handly little function which prints BCPL strings (BSTRs): */
/* (This one will add any necessary spaces to fill the whole */
/* "total_length" with text. This makes it look better since */
/* we can now use nice columns of text.) */

void PrintBSTR
(

Sourcecode: Example7.c 6 / 6

BSTR string_bstr,
int total_length

)
{

/* Temporary string pointer */
UBYTE *string_ptr;

/* The length of the BCPL string: */
UBYTE length;

/* Simple loop variable: */
int loop;

/* Conver the BSTR into a normal C pointer to a BCPL string: */
string_ptr = (UBYTE *) BADDR(string_bstr);

/* Get the length of the BCPL string: (A BCPL string does not */
/* contain a NULL sign in the end, but uses instead the first */
/* byte to tell how many characters the string contains. A */
/* BCPL string (BSTR) can therefore not contain more than 255 */
/* characters. */
length = string_ptr[0];

/* Print BCPL string: */
for(loop=1; loop <= total_length; loop++)

if(loop <= length)
putchar(string_ptr[loop]);

else
putchar(’ ’);

}

	Sourcecode: Example7.c
	Example7.c

